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Algebraic Differential Characters of Flat 1

Connections with Nilpotent Residues 2

Hélène Esnault 3

Abstract We construct unramified algebraic differential characters for flat connec- 4

tions with nilpotent residues along a strict normal crossings divisor. 5

1 Introduction 6

In [1], Chern and Simons defined classes Ocn..E;r// 2 H2n�1.X;R=Z.n// for 7

n 	 1 and a flat bundle .E;r/ on a C1 manifoldX , where Z.n/ WD Z � .2�p�1/n. 8

Cheeger and Simons defined in [2] the group of real C1 differential characters 9
OH2n�1.X;R=Z/, which is an extension of global R-valued 2n-closed forms with 10

Z.n/-periods by H2n�1.X;R=Z.n//. They show that the Chern–Simons classes 11

extend to classes Ocn..E;r// 2 OH2n�1.X;R=Z/, if r is a (not necessarily flat) 12

connection, such that the associated differential form is the Chern form computing 13

the nth Chern class associated to the curvature of r. 14

If X now is a complex manifold, and .E;r/ is a bundle with an algebraic con- 15

nection, Chern–Simons and Cheeger–Simons invariants give classes Ocn..E;r// 2 16
OH2n�1.Xan;C=Z/ with a similar definition of complex C1 differential charac- 17

ters. Those classes have been studied by various authors, and most remarquably, 18

it was shown by Reznikov that if X is projective and .E;r/ is flat, then the 19

classes Ocn..E;r// are torsion, for n 	 2. This answered positively a conjecture 20

by Bloch [3], which echoed a similar conjecture by Cheeger–Simons in the C1 21

category [2, 4]. 22

On the other hand, for X a smooth complex algebraic variety, we defined in [5] 23

the group ADn.X/ of algebraic differential characters. It is easily written as the 24

hypercohomology group Hn.X;Kn

d log���! �n
X

d�! �nC1
X ! : : :

d�! �2n�1
X /, where 25

Kn is the Zariski sheaf of Milnor K-theory which is unramified in codimension 1. 26
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It has the property that it maps to the Chow group CHn.X/, to algebraic closed 27

2n-forms which have Z.n/-periods, and to the complex C1 differential characters 28
OH2n�1.Xan;C=Z/. If .E;r/ is a bundle with an algebraic connection, it has classes 29

cn..E;r// 2 ADn.X/ which lift both the Chern classes of E in CHn.X/ and 30

Ocn..E;r//. All those constructions are contravariant in .X; .E;r//, the differen- 31

tial characters have an algebra structure, and the classes fulfill the Whitney product 32

formula. They admit a logarithmic version: if j W U ! X is a (partial) smooth 33

compactification of U such thatD WD X nU is a strict normal crossings divisor, one 34

defines the group ADn.X;D/ D Hn.X;Kn

d log���! �n
X.logD/

d�! �nC1
X .logD/ ! 35

: : :
d�! �2n�1

X .logD//. Obviously one has maps ADn.X/ ! ADi.X;D/ ! 36

ADn.U /. The point is that if .E;r/ extends a pole free connection .E;r/jU to 37

a connection on X with logarithmic poles along D, then cn..E;r/jU / 2 ADn.U / 38

lifts to well defined classes cn..E;r// 2 ADn.X;D/ with the same functoriality 39

and additivity properties. 40

If X is a smooth algebraic variety defined over a characteristic 0 field, 41

and X � U is a smooth (partial) compactification of U , it is computed in [6, 42

Appendix B] that one can express the Atiyah class [7] of a bundle extension E 43

of EjU in terms the residues of the extension r of rjU alongD D XnU . In partic- 44

ular, if X is projective, r has logarithmic poles alongD and has nilpotent residues, 45

one obtains that the de Rham Chern classes ofE are zero. If k D C, this implies that 46

the (analytic) Chern classes of E in Deligne–Beilinson cohomologyH2n
D .X;Z.n// 47

lie in the continuous part H2n�1.Xan;C=Z.n//=F
n � H2n

D .X;Z.n//. 48

The purpose of this note is to show that this lifting property is in fact stronger. 49

Theorem 1. Let X � U be a smooth (partial) compactification of a complex 50

variety U , such that D D P
j Dj D X n U is a strict normal crossings divi- 51

sor. Let .E;r/ be a flat connection with logarithmic poles along D such that its 52

residues 
j along Dj are all nilpotent. Then the classes cn..E;r// 2 ADn.X;D/ 53

lift to well defined classes cn..E;r; 
// 2 ADn.X/, which satisfy the Whitney 54

product formula. More precisely, the classes cn..E;r; 
// lie in the subgroup 55

ADn1.X/ D Hn.X;Kn

d log���! �nNX
d�! �nC1

X ! : : :
d�! �

dim.X/
X / � ADn.X/ of 56

classes mapping to 0 in H0.X;�2n
X /. 57

They also fulfill some functoriality property, and one can express what their restric- 58

tion to the various strata of D precisely are. 59

Let us denote by Ocn..E;r; 
// the image of cn..E;r; 
// via the regulator map 60

ADn.X/ ! OH2n�1.Xan;C=Z/ defined in [5] and [8], which restricts to a regula- 61

tor map ADn1.X/ ! H2n�1.Xan;C=Z.n//. As an immediate consequence, one 62

obtains the following: 63

Corollary 2. Let .X; .E;r; 
// be as in the theorem. Then the Cheeger–Chern– 64

Simons classes Ocn..E;r/jU / 2 H2n�1.Uan;C=Z.n// � OH2n�1.Uan;C=Z/ lift to 65

well defined classes Ocn..E;r; 
// 2 H2n�1.Xan;C=Z.n// � OH2n�1.Xan;C=Z/, 66

with the same properties. 67

A direct C1 construction of Ocn..E;r; 
// 2 H2n�1.Xan;C=Z.n// in the spirit of 68

Cheeger–Chern–Simons has been performed by Deligne and is written in a letter 69
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of Deligne to the authors of [9]. It consists in modifying the given connection r 70

by a C1 one form with values in End.E/, so as to obtain a (possibly non-flat) 71

connection without residues along D. This modified connection admits classes in 72

H2n�1.Xan;C=Z.n// � OH2n�1.Xan;C=Z/. That they do not depend on the choice 73

of the one form relies essentially on the argument showing that if r is flat with log- 74

arithmic poles along D (and without further conditions on the residues), for n 	 2, 75

the image of cn..E;r// in H0.U;H2n�1
DR /, where Hj

DR is the Zariksi sheaf of j -th 76

de Rham cohomology, in fact lies in the unramified cohomology H0.X;H2n�1
DR / � 77

H0.U;H2n�1
DR /. For this, see [10, Theorem 6.1.1]. In the case when D is smooth, 78

Iyer and Simpson constructed the C1 classes Ocn..E;r; 
// 2 H2n�1.Xan;C=Z.n// 79

using the existence of the C1 trivialization of the canonical extension after an étale 80

cover, a fact written by Deligne in a letter, together with Deligne’s suggestion of 81

considering patched connection. They then show that Reznikov’s argument and the- 82

orem [11] adapts to those classes. Our note is motivated by the question raised in [9] 83

on the construction in the general case. 84

Our algebraic construction in Theorem 1 relies on the modified splitting principle 85

developed in [5,8,12] in order to define the classes in ADn.X;D/. Let q W Q! X 86

be the complete flag bundle of E . A flat connection on E with logarithmic poles 87

along D defines a map of differential graded algebras � W ��
Q.log q�1.D// ! K� 88

where Ki D q��i
X.logD/ and Rq�K� D ��

X.logD/. This defines a partial 89

flat connection � ı q�r W q�E ! q��1
X.logD/ ˝OQ q�E which has the prop- 90

erty that it stabilizes all the rank one subquotients of q�E . On the other hand, 91

the nilpotency of 
 allows to filter the restriction Ej† to the different strata † 92

of D, in such a way that the restriction rj† W Ej† ! �1
X.logD/j† ˝ Ej† of 93

the connection stabilizes the filtration F �
†, and has the following important extra 94

property: the induced flat connection rj† on gr.F �
†/ has values in �1

†.log rest/, 95

where rest is the interestion with † of the part of D which is transversal to †. 96

This fact translates into a sort of stratification of the flag bundle Q, where � is 97

refined on this stratification and has values in the pull back of �1
†.rest/. Mod- 98

ulo some geometry in Q, the next observation consists in expressing the sections 99

˛ 2 �i
X of forms without poles as pairs ˛ D .ˇ˚ 	/ 2 �1

X.logD/˚�1
D such that 100

ˇjD D 	 , where�i
D D �i

X=�
i
X.logD/.�D/ � �i

X.logD/jD . This yields a com- 101

plex receiving quasi-isomorphically��i
X , which is convenient to define the wished 102

classes. 103

2 Filtrations 104

Let X be a smooth variety defined over a characteristic 0 field k. Let D � X be a 105

strict normal crossings divisor (i.e., the irreducible components are smooth over k), 106

and let .E;r/ be a connection r W E ! �1
X.logD/ ˝ E with residue 
 defined 107

by the composition 108
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 �����
���

���
����

���
�

r �� �1
X.logD/˝OX E

1˝res

��
��OD.1/ ˝OX E

(1)

where D.1/ D tjDj . The composition of 
 with the projection ��OD.1/ ! ODj 109

defines 
j W E ! ODj ˝ E which factors through 
j 2 End.ODj ˝E/. We write 110


 2 HomOX .OD ˝OX E; ��OD.1/ ˝OX E/: (2)

Recall that if r is integrable, then 111

Œ
i jDij ; 
j jDij � D 0: (3)

We use the notationDI D Di1 \ : : :\Dir if I D fi1; : : : ; irg,D D DI CP
s2I Ds 112

with DI D P
`…I D`. The connection r W E ! �1

X.logD/ ˝ E stabilizes 113

E.�Dj /, but also E ˝ IDI , as the Kähler differential on OX restricts to a flat 114

�1
X.log.

P
s2I Ds//-connection on IDI . Thus r induces a flat connection 115

rI W EjDI ! �1
X.logD/jDI ˝ EjDI : (4)

One has the diagram 116

�1
Dj
.log.Dj \Dj //˝E

��

1˝j ����
��

��
��

���
��

��
��

��
��

��
��

�2
Dj
.log.Dj \Dj //˝ E

��
EjDj


j
��























rj �� �1

X.logD/jDj ˝ E
res

��

rj �� �2
X.logD/jDj ˝ E

res

��
EjDj �1

Dj
.log.Dj \Dj //˝ E

(5)

We define F 1
j D Ker.
j / � EjDj . It is a coherent subsheaf. rj sends F 1

j to 117

�1
Dj
.logDj \ Dj / ˝ E , but because of integrability, the diagram (3) shows that 118

rDj induces a flat connection F 1
j ! �1

Dj
.logDj \Dj /˝ F 1

j . 119

Claim 1. F 1
j � EjDj is a subbundle. 120

Proof. We use Deligne’s Riemann–Hilbert correspondence [13]: the data are defined 121

over a field of finite type k0 over Q, so embeddable in C, and the question is compat- 122

ible with the base changes˝k0k and ˝kC. So it is enough to consider the question 123

for the underlying analytic connection on a polydisk .��/r � �s with coordinates 124

xj , where Dj is defined by xj D 0 for 1 � j � r . By the Riemann–Hilbert cor- 125

respondence, the argument given in [13, p. 86] shows that the analytic connection 126
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is isomorphic to .V ˝O;
Pr

1 

0
j
dxi
xi
/, where the matrices 
0j are constant nilpotent. 127

Thus F 1
j is isomorphic to F 1

j .V /˝ODj on the polydisk, with F 1
j .V / WD Ker.
0j /, 128

thus is a subbundle. � 129

We can replace EjDj by EjDj =F 1
j in 4 and redo the construction. This defines by 130

pull back F 2
j � EjDj � Ker.
j W EjDj =F 1

j ! EjDj =F 1
j / with F 2

j � F 1
j etc. 131

Claim 2. F �
j W F 0

j D 0 � F 1
j � : : : � F i

j � : : : � F
rj
j D EjDj is a filtration 132

by subbundles with a flat �1
X.logD/jDj -valued connection, such that the induced 133

connection rj on gr.F �
j / is flat and �1

Dj
.logDj \ Dj /-valued. (One can also 134

tautologically say that F �
j refines the (trivial) filtration on EjDj ). 135

Proof. By construction, the flat �1
X.logD/jDj -valued connection rj on EjDj 136

respects the filtration and induces a flat�1
Dj
.logDj \Dj /-connection on gr.F �

j /. 137

We use the transcendental argument to show that this is a filtration by subbundles. 138

With the notations as in the proof of the Claim 1, F s
j is analytically isomorphic 139

to F s
j .V / ˝ ODj , where F 1

j .V / � F 2
j .V / � : : : � V is the filtration on V 140

defined by the successive kernels of 
0j , so F 2
j .V / is the inverse image of Ker.
0j / 141

on V=F 1
j .V /, etc. � 142

The argument which allows us to construct F �
j can in be used to define successive 143

refinements on all EjDI . We consider now the case jI j D r 	 2. We refine the 144

filtrations F �
J jDI , which have been constructed inductively, where J � I; jJ j < r . 145

In fact, we do the construction directly on EjDI . We have r linear maps induced 146

by 
j 147


j jDI W EjDI
rI�! �1

X.log.D//jDI ˝ EjDI ! ODj ˝ EjDI D EDI (6)

We define 148

F 1
I D \j2IKer.
j jDI / D \j2IF 1

j jDI : (7)

Claim 3. F 1
I � EjDI is a subbundle, stabilized by the connection rI , and more 149

precisely one has rI W F 1
I ! �1

DI
.log.DI \DI //˝ F 1

I : 150

Proof. We argue analytically as in the proof of Claim 1. With notations as there, the 151

analytic F 1
I isomorphic to F 1

I .V /˝ODI . � 152

Thus rI induces a flat �1
X.logD/jDI -valued connection on the quotient EjDI =F 1

I . 153

We define F 2
I � F 1

I in EjDI to be the inverse image via the projection EjDI ! 154

EjDI =F 1
I of \j2IKer.
j jDI /, etc. 155

Claim 4. The filtration F �
I W F 0

I D 0 � F 1
I � F 2

I � : : : � F
rI
I D EjDI 156

is a filtration by subbundles, stabilized by rI , such that rI on gr.F �
I / is a flat 157

�1
DI
.log.DI \DI //-valued connection. Furthermore, F �

I refines all F �
J jDI for all 158

J � I; jJ j < r and one has compatibility of the refinements in the sense that if 159
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K � J � I , then the refinement F �
I of F �

K jDI is the composition of the refinements 160

F �
I of F �

J jDJ and F �
J of F �

K jDJ . 161

Proof. We argue again analytically. Then F s
I is isomorphic to F s

I .V / ˝ ODI with 162

the same definition. The filtration terminates as finitely many mutually commut- 163

ing nilpotent endomorphisms on a finite dimensional vector space always have a 164

common eigenvector. � 165

Definition 3. We call F �
I the canonical filtration of EjDI associated to r, which 166

defines .gr.F �
I /;rI ; 
I / where rI is the flat�1

I .log.DI \DI/-valued connection 167

on gr.F �
I /, and 
I is its nilpotent residue along the normalization of DI \DI . 168

Proof. 169
Au: Please
check if
“Proof” could
be deleted or
provide
appropriate
text.

3 �-Splittings 170

We first define flag bundles. We set qI W QI ! DI to be the total flag bundle 171

associated to EjDI . So the pull back of EjDI to QI has a filtration by subbundles 172

such that the associated graded bundle is a sum of rank one bundles �sI for s D 173

1; : : : ; N D rank.E/ (It is here understood that D; D X , and to simplify, we set 174

q D q; W Q ! X;Q; D Q). For J � I , the inclusion DI ! DI defines 175

inclusions i.J � I / W QI ! QJ . The canonical filtrations associated to r allow 176

to define partial sections of the qI . As an illustration, let us assume that I D f1g, 177

thus D is smooth, and that F �
1 is a total flag, i.e., the gr.F �

1 / is a sum of rank one 178

bundles. Then F �
1 defines a section D

�F1�! Q. 179

More generally, let us define Gs
I D F s

I =F
s�1
I . We define 180

QI

qI

��

QF
I

�FI��

qFI����
��
��
��

DI

(1)

using the filtration: recall that QI ! DI is the composition of P.EjDI / ! DI 181

with P.E 0/ ! P.EjDI / etc., where E 0 ! OP.E/ ˝ E is the rank .N � 1/ sub- 182

bundle defined as the kernel to the rank 1 canonical rank 1 bundle �NI .P.EjDI //, 183

the pull back of which to QI defines the last graded rank 1 quotient. Then the quo- 184

tient EjDI ! G
rI
I defines a map P.EjDI /  � P.G

rI
I / such that the pull back of 185

�NI .P.EjDI // is �, where � is the canonical rank 1 bundle. Writing G0 ! G
rI
I for 186

the kernel, we redo the same construction for E 0; G0 replacing EjDI ;GrI
I etc. We 187

find this way that the flag bundle of GrI
I maps to the intermediate step between DI 188

and QI which splits the first M rank 1 bundles, where M is the rank of GrI
I . Then 189

we continue with the pull back of GrI�1
I to the flag bundle of GrI

I , replacing GrI
I , 190
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and E 00 replacing E , where E 00 on this intermediate step is the rank N �M bundle 191

which is not yet split. All this is very classical. 192

We have extra closed embeddings �F .I � J / which come from the refinements 193

of the canonical filtrations, which are described in the same way: for J � I , one 194

has commutative squares 195

QF
J

qFJ

��

QF
I

�F .I�J /��

qFI

��
DJ DI

i.I�J /
��

Q

q

��

QF
I

�I��

qFI

��
X DI

iI

��

(2)

where iI D i.; � I /; �I D �.; � I /. 196

Recall from [5, 8, 12] that r yields a splitting � W �1
Q.log q�1.D// ! 197

q��1
X .logD/, and that flatness ofr implies flatness of � in the sense that it induces 198

a map of differential graded algebras .��
Q.log q�1.D//; d/ ! .q���

X.logD/; d� / 199

so in particular, .Rq���n
X .logD/; d/ D .�

�n
X .logD/; d/. Furthermore, the filtra- 200

tion on q�.E/ which defines the rank one subquotient �s has the property that it is 201

stabilized by � ıq�r, and this defines a �-flat connection �s ! q��1
X.logD/˝ �s . 202

The �-splitting is constructed first on P.E/, with p W P.E/ ! X . Then � ı r 203

stabilizes the beginning of the flag E 0 �pull-back of E etc. Concretely, the compo- 204

sition �1
P.E/=X.1/

r�! �1
P.E/ ˝ E

projection�����! �1
P.E/ ˝ OP.E/.1/ defines the splitting. 205

On the other hand, the flat �1
X.logD/jDI -valued connection on GrI

I has values in 206

�1
DI
.log.DI \DI //. 207

When we restrict to P.G
rI
I /, then one has a factorization 208

�1
P.E/.logp�1.D//˝O

P.G
rI
I /

�
������

����
����

����
��

�.G
rI
I /�� �1

DI
.log.DI \DI//˝O

P.G
rI
I /

inj

��
�1
X.logD/˝O

P.G
rI
I /

(3)

which defines a differential graded algebra .��
DI
.log.DI \ DI // ˝ O

P.G
rI
I /
; d� / 209

with total direct image onDI being .��
DI
.log.DI \DI //; d/ and with the property 210

that � has a flat connection with values in�1
DI
.log.DI \DI //, which is compatible 211

with the flat p��1
X.logD/-connection on �N . We can repeat the construction with 212

DI ! X replaced by P.G
rI
I /! P.EjDI /, withEjDI ! G

rI
I replaced byE 0 ! G0 213

where E 0 D Ker.EjDI ˝ OP.EjDI / ! O.1// and G0 D Ker.GrI
I ! O.1/. This 214

splits the next rank 1 piece, 1 still has the splitting as in (3), and we go on till we 215

reach the total flag bundle to GrI
I . Then we continue with the flag bundle to GrI�1

I 216

etc. We conclude 217
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Claim 5. One has a factorization 218

��
I �

1
Q.log q�1.D//

�
�����

����
����

����
�

�I �� .qFI /
��1

DI
.log.DI \DI//

inj

��
.qFI /

��1
X.logD/jDI

(4)

�I defines a differential graded algebra ..qFI /
���

DI
.log.DI \ DI//; d� / which is 219

a quotient of ��
I .�

�
Q.logq�1.D//; d/. The flat q��1

X.logD/-valued �-connection 220

on �s; s D 1; : : : ; N , restricts via the splitting �I , to a flat .qFI /
��1

DI
.log.DI \ 221

DI//-valued �-connection on .�FI /
s D ��

I �
s . 222

Definition 4. On Q we define the complex of sheaves 223

A.n/ D An ! AnC1 ! : : :

with 224

Ai D Bi ˚ C i

Bi D ˚I .�I /�.qFI /��i
DI
.log.DI \DI //;

C i D ˚I¤;.�I /�.qFI /��i�1
X .logD/jDI ;

whereC i D 0 for i D n. The differentialsD� are defined as follows: .˚I ˇI ;˚I 	I /, 225

where ˇI 2 .�I /�.qFI /��i
DI
.log.DI \DI //; 	I 2 .�I /�.qFI /��i�1

X .logD/jDI is 226

sent to 227

˚I d�ˇI 2 .�I /�.qFI /��iC1
DI
.log.DI \DI //;

˚I d�	I C .�1/i .��
I ˇ � ˇI / 2 .�I /�.qFI /��i

X.logD/jDI :

Let Kn be the image of the Zariski sheaf of Milnor K-theory into Milnor 228

K-theory Kn.k.X/ of the function field (which is the same as Ker(Kn.k.X// ! 229

˚Kn�1.�.x/// on all codimension 1 points x 2 X ). The �-differential defines 230

d� log W Kn ! An D Bn (Cn D 0). The image in An is D� -flat. Thus this defines 231

d� log W Kn ! A.n/Œ�1�. 232

Definition 5. We define Kn�
1
Q to be the complex Kn

d� log���! A.n/Œ�1� and 233

Kn�
1
Q � .Kn�

1
Q /0 to be the subcomplex Kn

d� log���! AnD� , where AnD� means the 234

subsheaf of D� -closed sections. 235

Lemma 6. The �-connections on .�FI /
s define a class �s.r/ 2 H1.Q; .K1�

1
Q /0/ 236

with the property that the image of �s.r/ in H1.Q;K1/ is c1.�s/. 237
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Proof. The cocycle of the class �s.r/ results from the Claim 5. Write gs˛ˇ for a 238

K1-valued 1-cocyle for �s . Then the flat �-connection on �s is defined by local sec- 239

tions !s˛ in q��1
X.logD/ which are d� flat for d� W q��1

X.logD/! q��2
X.logD/. 240

So the cocyle condition reads d� loggs˛ˇ D ı.!s/˛ˇ where ı is the Cech differential. 241

The Claim 5 implies then that ��
I .!

s
˛/ 2 .qFI /��1

DI
.log.DI \DI //, is �-flat and 1 242

has d� log��
I .g

s
˛ˇ/ D ı��

I .!
s/˛ˇ . So the class .�FI /

s is defined by the Cech cocyle 243

.gs˛ˇ; �
�
I !

s ˚ 0/, with ��
I !

s 2 B1; 0 2 C1. � 244

We define a product 245

.Km�
1
Q /0 � .Kn�

1
Q /0

[�! .KmCn�1
Q /0 (5)

by using the formulae defined in [5, Definition 2.1.1], that is 246

x [ y D

8
<̂

:̂

fx; yg x 2 Km; y 2 Kn

d� logx ^ y ˚ d� logx ^ y x 2 Km; y 2 .Bn ˚ Cn/D�

0 else:

(6)

The product is well defined. 247

Definition 7. We define cn.q�.E;r; 
// 2 Hn.Q;Kn�
1
Q // to be the image via the 248

map Hn.Q; .Kn�
1
Q /0/! Hn.Q;Kn�

1
Q / of 249

X

s1<s2:::<sn

�s1 .r/ [ � � � [ �sn .r/:

Definition 8. On X we define the complex of sheaves 250

AX.n/ D AnX ! AnC1
X ! : : :

with 251

AiX D Bi
X ˚ C i

X

Bi
X D ˚I .iI /��i

DI
.log.DI \DI //;

C i
X D ˚I¤;.iI /��i�1

X .logD/jDI ;

where C i
XD 0 for iDn. The differentialsDX are defined as follows: .˚I ˇI ;˚I 	I /, 252

where ˇI 2 .iI /��i
DI
.log.DI \DI//; 	I 2 .iI /��i�1

X .logD/jDI is sent to 253

˚I dˇI 2 .iI /��iC1
DI
.log.DI \DI //;

˚I d	I C .�1/i .i�I ˇ � ˇI / 2 .iI /��i
X.logD/jDI ;

where the differentials d� are the � differentials in the various differential graded 254

algebras��
DI
.log.DI \DI//. 255
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One has an injective morphism of complexes 256

� W ��n
X ! A

�n
X (7)

sending ˛ 2 �i
X to i�I ˛ ˚ 0. 257

Proposition 9. The morphism � is a quasi-isomorphism. Furthermore, one has 258

Rq�A.n/ D AX.n/. 259

Proof. We start with the second assertion: since �I is a closed embedding, one 260

has R.�I /� D .�I /� on coherent sheaves. Thus by the commutativity of the dia- 261

gram (2), and the fact that O on the flag varieties is relatively acyclic, one has 262

Rq�.R�I /�.qFI /�E D .iI /�E for a locally free sheaf E on DI . This shows the 263

second statement. We show the first assertion. We first show that the 0th cohomol- 264

ogy sheaf of AX.n/ is .�n
X/d . The condition D.ˇ; ˇI / D 0 means dˇ D dˇI D 0 265

and i�I ˇ D ˇI . Thus ˇ 2 �n
X and dˇ D 0. Assume now i 	 nC 1. Then modulo 266

DAi�1.n/, ..ˇ; ˇI /; 	I / is equivalent to ..ˇ; ˇI C .�1/i�1d	I /; 0/. So we are back 267

to the computation as in the case i D n and Ker.D/ on Bi ˚ 0 is Ker.d/ on �i
X . 268

On the other hand, by the same reason, D.Bi�1 ˚ C i�1/ D D.Bi�1 ˚ 0/, and 269

D.Bi�1 ˚ 0/\ .Bi ˚ 0/ D d.�i
X/. This finishes the proof. � 270

Proposition 10. The map q� W ADn.X/1 D Hn.X;Kn

d log���! �n
X

d�! : : :
d�! 271

�dimX / ! Hn.Q;Kn�
1/ is injective. The classes cn..q�.E;r; 
// 2 Hn 272

.Q;Kn�
1/ in Definition 7 are of the shape q�cn..E;r; 
// for uniquely defined 273

classes cn..E;r; 
// 2 Hn.X;Kn

d log���! �n
X

d�! : : :! �dimX /. 274

Proof. One has a commutative diagram of long exact sequences 275

Hn�1.Q;Kn/ �� Hn�1.A.n// �� Hn.Kn�
1
Q / �� Hn.Q;Kn/

Hn�1.X;Kn/

inj

��

�� Hn�1.A.n/X /

D
��

�� Hn.Kn�
1
X /

��

�� Hn.X;Kn/

inj

�� (8)

where Kn�
1
X D Kn

d log���! �n
X

d�! : : :
d�! �dimX

X . We write Hi.Q;Kj / D 276

Hi.X;Kj / ˚ rest, where the rest is divisible by the classes of powers of the 277

Œ�s � 2 H1.Q;K1/, with coefficients in some Ha.X;Kb/. But Œ�s � comes by 278

Lemma 6 from a class �s.r/ 2 H1.Q; .K1�
1
Q /0/. Consequently, the image of rest 279

in Hi .A.n// dies. We conclude that one has an exact sequence 0! Hn.Kn�
1
X /! 280

Hn.Kn�
1
Q / ! Hn.X;R�q�Kn=q�Kn/. By the standard splitting principle for 281

Chow groups, one hasHn.Q;Kn/=H
n.X;Kn/ D Hn.X;R�q�Kn=q�Kn/, and 282

X

s1<s2:::<sn

c1.�
s1 / [ � � � [ c1.�sn / 2 Im.CHn.X/ � CHn.Q//:
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By Lemma 6, �s.r/ 2 H1.Q; .K1�
1/0/ maps to c1.�s/ 2 H1.Q;K1/. Thus we 283

conclude that cn.q�.E;r; 
// 2 Im.Hn.Kn�
1
X / � Hn.Kn�

1
Q /. This finishes the 284

proof. � 285

Theorem 11. Let X � U be a smooth (partial) compactification of a variety U 286

defined over a characteristic 0 field, such that D D P
j Dj D X n U is a strict 287

normal crossings divisor. Let .E;r/ be a flat connection with logarithmic poles 288

along D such that its residues 
j along Dj are all nilpotent. Then the classes 289

cn..E;r// 2 ADn.X;D/ lift to well defined classes cn..E;r; 
// 2 ADn.X/. 290

They are functorial: if f W Y ! X with Y smooth, such that f �1.D/ is a 291

normal crossings divisor, étale over its image � D, then f �cn..E;r; 
// D 292

cn.f
�.E;r; 
// in ADn.Y /. If D0 � D is a normal crossings divisor and 293

r 0 is the connection r, but considered with logarithmic poles along D0, thus 294

with trivial residues along the components of D0 n D, then cn..E;r; 
// D 295

cn..E;r 0; 
 0//. The classes cn..E;r; 
// satisfy the Whitney product formula. In 296

addition, cn..E;r; 
// lies in the subgroup ADn1.X/ D Hn.X;Kn

d log���! �nNX
d�! 297

�nC1
X ! : : :

d�! �
dim.X/
X / � ADn.X/ of classes mapping to 0 in H0.X;�2n

X /. The 298

restriction to ADn1.DI / of cn..E;r; 
// is cn..gr.F �
I /;rI ; 
I // where .gr.F �

I /; 299

rI ; 
I / is the canonical filtration (see Claim 4 and Definition 3). 300

Proof. The construction is the Proposition 10. We discuss functoriality. If f is 301

as in the theorem, then the filtrations F �
I for .E;r/ restrict to the filtration for 302

f �.E;r/. Whitney product formula is proven exactly as in [12, 2.17, 2.18] and 303

[8, Theorem 1.7], even if this is more cumbersome, as we have in addition to fol- 304

low the whole tower of F �
I . Finally, the last property follows immediately from the 305

definition of �s.r/ in Lemma 6. � 306

Theorem 12. Assume given k � C and 
 is nilpotent. Then the classes Ocn..E;r// 307

2 H2n..X n D/an;C=Z.n// defined in [12], come from well defined classes 308

Ocn..E;r; 
// 2 H2n�1.Xan;C=Z.n//. Furthermore Ocn..E;r; 
// fulfill the same 309

functoriality, additivity, restriction, and enlargement of r properties as cn..E;r; 310


// 2 ADn1.X/. 311

Proof. We just have to use the regulator map ADn.X/ ! H2n�1.Xan;C=Z.n//, 312

which is an algebra homomorphism, and which defined in [8, Theorem 1.7]. Of 313

course we can also follow the same construction directly in the analytic category. 314

� 315
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13. Deligne P (1970) Équations Différentielles à Points Singuliers Séguliers. Lecture Notes in 342

mathematics vol. 163, Springer, Berlin 343
14. Esnault H (2002) Characteristic classes of flat bundles and determinant of the Gauß-Manin 344

connection. Proceedings of the International Congress of Mathematicians, Beijing, Higher 345
Education Press, pp 471–483Au: Please

provide
citation for the
reference [14].

346




